

I_P-SEPARATION AXIOMS IN IDEAL TOPOLOGICAL SPACES

S. Rakshana^{*}, P. Elango

Department of mathematics, Eastern University, Sri Lanka.

INTRODUCTION

Separation axioms play a major role in topological space analysis. The separation axioms deal with the use of topological concepts to distinguish among disjoint sets and distinct points. In topological spaces, there are many different forms of separation axioms. We primarily discuss T_0 space, T_1 space, and T_2 space(Hausdorff space) spaces in topological spaces. Separation axioms between T_0 space, T_1 space, and T_2 space(Hausdorff space) are the focus of several topologists[1,2,3].

Several studies were conducted in the context of ideal topological spaces after the concept of ideals was introduced. In 1930, Kuratowski [4] and Vaidyanathasamy [5] were the first to bring up the concept of ideals in topological spaces. The separation axiom in ideal topological spaces was presented by Dontchev [2] in 1995, and it has since been improved by a number of scholars.

In this study, *Ip*-open sets are used to establish a new kind of separation axiom in ideal topological spaces, called *Ip*-separation axioms. In ideal topological space, this includes $Ip-T_0$ space, $Ip-T_1$ space, and $Ip-T_2$ space(Hausdorff space). The known implications of these axioms among themselves and with other axioms are examined, as well as some of their most important features.

METHODOLOGY

Definition 2.1 An ideal *I* on a topological space (X, τ) is a nonempty collection of subsets of *X* which satisfies the following properties:

- 1) $A \in I$ and $B \subseteq A$ implies $B \in I$.
- 2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

If *I* is an ideal on *X*, then (X, τ, I) is called an ideal topological space.

Definition 2.2 A subset A of an ideal topological space (X, τ, I) is said to be *Ip*-closed set if $A^* \subseteq U$ whenever $A \subseteq U$ and U is preopen.

We define the complement of an *Ip*-closed set as being an *Ip*-open set.

Definition 2.3 Subspace ideal Topology

Let (X, τ, I) be an ideal topological space. If Y is a subset of X, then the collection $\tau_Y = \{I_0 \cup Y \mid I_0 \in I\}$ is an ideal on Y and by (Y, τ_Y, I_Y) is called the subspace ideal topology.

Definition 2.4 *Ip*-Irresolute Map

Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces. A map $f : (X, \tau, I) \longrightarrow (Y, \sigma, J)$ is called *Ip*-irresolute if $f^{I}(V)$ is a *Ip*-closed set in (X, τ, I) for every Ip-closed set V in (Y, σ, J) . **Definition 2.5** An ideal topological space (X, τ, I) is said to be

- 1) $Ig-T_0$ space [7] if for each pair of distinct points x, y of X, there exists an Ig-open set containing one point but not the other.
- 2) Irg- T_0 space [8] if for each pair of distinct points x, y of X, there exists an Irg-open set containing one point but not the other .
- 3) $\alpha Ig T_0$ space [9] if for each pair of distinct points x, y of X, there exists an αIg -open set containing one point but not the other.

Definition 2.6 An ideal topological space (X, τ, I) is said to be

- 1) $Ig-T_1$ space [7] if for each pair of distinct points x, y of X, there exists a pair of Ig-open sets, one containing x but not y and the other containing y but not x.
- 2) Irg- T_1 space [8] if for each pair of distinct points x, y of X, there exists a pair of Irgopen sets, one containing x but not y and the other containing y but not x.

Proceeding of the International Open University Research Sessions (iOURS 2022)

3) $\alpha Ig - T_1$ space [9] if for each pair of distinct points x, y of X, there exists a pair of αIg -open sets, one containing x but not y and the other containing y but not x.

Definition 2.7 An ideal topological space (X, τ, I) is said to be

- 1) $Ig-T_2$ space [7] if for each pair of distinct points x, y of X, there exists an Ig-open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.
- 2) Irg-T₂ space [8] if for each pair of distinct points x, y of X, there exists an Irg-open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.
- 3) $\alpha Ig T_2$ space [9] if for each pair of distinct points x, y of X, there exists an αIg -open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.

RESULTS

3.1 IP-To Space

Definition 3.1.1 An ideal topological space (X, τ, I) is said to be Ip- T_0 space if for each pair of distinct

points x, y of X, there exists an *Ip*-open set containing one point but not the other.

Lemma 3.1.2 Every T_0 space in an ideal topological space is a *Ip*- T_0 space.

Proof. Let x and y be two distinct points in (X, τ, I) and X bea T_0 space. Then, there exists an open set V such that $x \in V$ and $y \notin V$. Since every open set is a *Ip*-openset, therefore V is an *Ip*-open set where $x \in V$ and $y \notin V$. This gives, (X, τ, I) is a *Ip*- T_0 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.1.3 Consider the ideal topological space (X, τ, I) where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a Ip- T_0 space but not T_0 space. Since b and c are contained in all the open sets of X.

Lemma 3.1.4 Every I_{p} - T_{0} space in an ideal topological space is a I_{g} - T_{0} space.

Proof .Let *x* and *y* be two distinct points in (X, τ, I) and *X* be a *Ip*-*T*₀ space. Then, there exists an *Ip*-*T*₀ -open set *V* such that $x \in V$ and $y \notin V$. Since every *Ip*-open set is an *Ig*-open set,

therefore *V* is an *Ig*-open set where $x \in V$ and $y \notin V$. This gives, (X, τ, I) is a*Ig*-*T*₀ space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.1.5 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b, c\}\}$ and $I = \{\Phi, \{a\}\}$. Then, X is a*Ig*- T_0 space but not *Ip*- T_0 space. Since b and c are contained in all the *Ip*-open sets of X.

Lemma 3.1.6 Every Ip- T_0 space in an ideal topological space is a αIg - T_0 space.

Proof. Let x and y be two distinct points in (X, τ, I) and X be a Ip- T_0 space. Then, there exists an Ip-open set V such that $x \in V$ and $y \notin V$. Since every Ip-open set is an αIg -open set, therefore V is an αIg -open set where $x \in V$ and $y \in V$. This gives, (X, τ, I) is a αIg - T_0 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.1.7 Consider the ideal topological space (X, τ, I) , where $X=\{a,b,c\}$ with $\tau = \{X, \Phi, \{b\}, \{a,c\}\}$ and $I= \{\Phi, \{b\}\}$. Then, X is a αIg - T_0 space but not Ip- T_0 space. Since a and c are contained in the Ip-open sets X and $\{a,c\}$ of X.

Lemma 3.1.8 Every $Ip-T_0$ space in an ideal topological space is a $Irg-T_0$ space.

Proof. Let x and y be two distinct points in (X, τ, I) and X be a $Ip-T_0$ space. Then, there exists an Ip-open set V such that $x \in V$ and $y \notin V$. Since every Ip-open set is an Irg-open set, therefore V is an Irg-open set where $x \in V$ and $y \notin V$. This gives, (X, τ, I) is a Irg- T_0 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.1.9 Consider the ideal topological space (X, τ, I) where $X=\{a,b,c\}$ with $\tau=\{X, \Phi, \{b,c\}\}$ and $I=\{\Phi,\{a\}\}$. Then, X is a *Irg-* T_0 space but not $Ip-T_0$ space. Since b and c are contained in all the *Ip*-open sets of X.

Theorem 3.1.10 An ideal topological space (X, τ, I) is an $Ip-T_0$ space if and only if Ip-closure of distinct points are distinct.

Proof.Let *x* and *y* be two distinct points in *X* and *X* be an Ip- T_0 space. Then, there exists an Ip-open set *V* such that $x \in V$ but $y \notin V$. Also $x \notin V^C$ and $y \notin V^C$ where V^C is a Ip-closed set in *X*. Since $cl_P(\{y\})$ is the intersection of all Ip-closed sets which contains $y, y \in cl_P(\{y\})$ but $x \notin cl_P(\{y\})$ as $x \notin V^C$. Thus, $cl_P(\{x\}) \neq cl_P(\{y\})$.

Conversely, suppose that for any pair of distinct points *x* and *y* in *X*, $cl_P(\{x\}) \neq cl_P(\{y\})$. Then, there exists at least one point $z \in X$ such that $z \in cl_P(\{x\})$ but $z \notin cl_P(\{y\})$. If $x \in cl_P(\{y\})$, $cl_P(\{x\}) \subset cl_P(\{y\})$, then $z \in cl_P(\{y\})$, which is a contradiction. Hence $x \notin cl_P(\{y\})$. Now, $x \notin cl_P(\{y\})$ implies $x \in (cl_P(\{y\}))^C$, which is an *Ip*-open set in *X* containing *x* but not *y*. Hence *X* is a *Ip*-*T*₀ space.

Theorem 3.1.11 Every subspace of a $Ip-T_0$ space is a $Ip-T_0$ space.

Proof. Let *X* be a $aIp-T_0$ space and *Y* be a subspace of *X*.Let *x*, *y* be two distinct points of *Y*. Since $Y \subseteq X$ and *X* is a $Ip-T_0$ space, there exists an Ip-open set *V* such that $x \in V$ but $y \notin V$. Then, there exists an Ip-open set $V \cap Y$ in *Y* which contains *x* but does not contain *y*. Hence *Y* is a $Ip-T_0$ space.

Theorem 3.1.12 Let $f: (X, \tau, I) \longrightarrow (Y, \sigma, J)$ be a Ip-irresolute bijective map. If Y is a $Ip-T_0$ space then X is $Ip-T_0$ space.

Proof. Assume that Y is a $Ip-T_0$ space. Let u, v be two distinct points of Y. Since f is a bijection, for every x, $y \in X$ such that $f^{1}(u) = x$ and $f^{1}(v) = y$. Since Y is a $Ip-T_0$ space, there exists an Ip-open set H in Y such that $u \in H$ but $v \notin H$. Since f is Ip-irresolute, $f^{1}(H)$ is a Ip-open set in X containing f(x) = u but not containing f(y) = v. Thus, there exists an Ip-open set $f^{1}(H)$ but $y \notin f^{1}(H)$ and hence X is a $Ip-T_0$ space.

3.2 *Ip*-*T*¹ Space

Definition 3.2.1 An ideal topological space (X, τ, I) is said to be Ip- T_1 space if for each pair of distinct points x, y of X, there exists a pair of Ip-open sets, one containing x but not y and the other containing y but not x. That is, An ideal topological space X is a Ip- T_1 space if for any x, $y \in X$ with $x \neq y$, there exist an Ip-open sets G, H such that $x \in G$, $y \notin G$ and $y \in H$, $x \notin H$.

Lemma 3.2.2 Every T_1 space in an ideal topological space is a $Ip-T_1$ space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) and *X* be a T_1 space. Then, there exists a pair of open sets *U*, *V* in *X* such that $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. Since every open set is an *Ip*-open set, therefore *U* and *V* are Ip-open sets where $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. This gives, (X, τ, I) is a *Ip*- T_1 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.2.3 Consider the ideal topological space (X, τ, I) where $X = \{a, b, c\}$ with

 $\tau = \{X, \Phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a Ip- T_1 space but not T_1 space. Since there is no open set containing b but not containing a.

Lemma 3.2.4 Every I_{p-T_1} space in an ideal topological space is a I_{g-T_1} space.

Proof :Let x and y be two distinct points in (X, τ, I) and X bea Ip- T_1 space. Then, there exists a pair of Ip-opensets U, V in X such that $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. Since every Ip-open set is an Ig-openset, therefore U and V are Ig-open set where $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. This gives, (X, τ, I) is a Ig- T_1 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.2.5 Consider the ideal topological space (X, τ, I) , where $X=\{a,b,c\}$ with $\tau = \{X, \Phi, \{b,c\}\}$ and $I=\{\Phi,\{a\}\}$. Then, X is a*Ig*-T₁space but not*Ip*-T₁space. Since there is no *Ip*-open set containing b but not containing c.

Lemma 3.2.6 Every I_{p-T_1} space in an ideal topological space is a αI_g - T_1 space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) and *X* be a *Ip*-*T*₁space. Then, there exists a pair of *Ip*-open sets *U*, *V* in *X* such that $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. Since every *Ip*-open

set is an αIg -open set, therefore U and V are αIg -open sets where $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. This gives (X, τ, I) is a αIg - T_1 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.2.7 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{a, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a $\alpha Ig - T_1$ spacebut not $Ip - T_1$ space. Since there is no Ip-open set containing a but not containing c.

Lemma 3.2.8 Every *Ip*-*T*₁space in an ideal topological space is a *Irg*-*T*₁space.

Proof. Let x and y be two distinct points in (X, τ, I) , and X bea Ip- T_1 space. Then, there exists a pair of Ip-opensets U,V in X such that $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. Since every Ip-open set is an Irg-open set, therefore U and V are Irg-open set where $x \in U$ and $y \notin U$, $y \in V$ and $x \notin V$. This gives, (X, τ, I) , is a Irg- T_1 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.2.9 Consider the ideal topological space (X, τ, I) , where $X=\{a,b,c\}$ with $\tau=\{X, \Phi, \{b,c\}\}$ and $I=\{\Phi,\{a\}\}$. Then, X is a *Irg-T*₁ space but not *Ip-T*₁space. Since there is no *Ip*-open set containing *b* but not containing *c*.

Lemma 3.2.10 Every I_{P} - T_1 space in an ideal topological space is a I_{P} - T_0 space.

Proof. Suppose *X* is a *Ip*-*T*₁space, then for distinct points*x* and *y* in *X*, there exists an *Ip*-open sets *G* and H such that $x \in G$, $y \notin G$ and $y \in H$, $x \notin H$. Since $G \cap H = \Phi$, $x \in G$ and $y \in H$. Then, either $x \in G$, $y \notin G$ or $y \in H$, $x \notin H$. Thus, *X* is a *Ip*-*T*₀ space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.2.11 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a Ip- T_0 space but not Ip- T_1 space. Since for the distinct points b and c there exists a pair of Ip-open sets $\{c\}$ and $\{b, c\}$ one contain b but not c and the other containing both b and c.

Theorem 3.2.12 Every subspace of a *Ip*-*T*₁space is also *Ip*-*T*₁space.

Proof. Let *X* be a *Ip*-*T*₁space and let *Y* be a subspace of *X*. Let *x*, $y \in Y \subseteq X$ such that $x \neq y$. By

hypothesis X is Ip- T_1 space, hence there exists an Ip-open sets U, V in X such that $x \in U$ and $y \in V$, $x \notin V$ and $y \notin U$. By definition of subspace, $U \cap Y$ and $V \cap Y$ are Ip-open sets in Y. Further, $x \in U$, $x \in Y$ implies $x \in U \cap Y$ also $y \in V$, $y \in Y$ implies $y \in V \cap Y$. Thus, there exist an Ip-open sets $U \cap Y$ and $V \cap Y$ in Y such that $x \in U \cap Y$, $y \in V \cap Y$ and $x \in V \cap Y$, $y \notin U \cap Y$. Therefore, Y is a Ip- T_1 space.

Theorem 3.2.13 Let $f: (X, \tau, I) \longrightarrow (Y, \sigma, J)$ be an injective and Y be a Ip- T_1 space. If f is Ip-irresolute, then X is a Ip- T_1 space.

Proof. Assume that *Y* is a Ip- T_1 space. Let $x, y \in Y$ such that $x \neq y$. Then, there exists a pair of Ip-open sets $U, V \in Y$ such that $f(x) \in U$ and $f(y) \in V, f(x) \notin V$ and $f(y) \notin U$ which implies $x \in f^1(U)$, $y \in f^1(V)$ and $x \notin f^1(V)$, $y \notin f^1(U)$ Since f is Ip-irresolute. Therefore, $f^1(U)$ and $f^1(V)$ are Ip-open sets in X. Thus X is a Ip- T_1 space.

Theorem 3.2.14 An ideal topological space X is said to be Ip- T_1 space if and only if every singleton subset of X is Ip-closed set.

Proof. Suppose that X is a Ip- T_1 space and $a \in X$. We shallprove that $\{a\}^C$ is an Ip-open set. Let $x \in \{a\}^C$. Then, $x \neq a$, so there exists an Ip-open set U_X such that $x \in U_X$ but $a \notin U_X$. That is, $x \in U_X \subseteq \{a\}^C$. Thus, $\bigcup \{x\} \subseteq \bigcup \{G_X : x \in \{a\}^C\} \subseteq \{a\}^C$. That is, $\{a\}^C = \bigcup \{G_X : x \in \{a\}^C\}$. Since $\bigcup \{G_X : x \in \{a\}^C\}$ is Ip-open, $\{a\}^C$ is Ip-open.

Conversely stippings that $\{a\}$ is a Ip-closed set for any $a \in X$. Let $x, y \in X$ with $x \neq y$. Then, $y \in \{x\}^{C}$ where $\{x\}^{C}$ is Ip-open and $x \in \{x\}^{C}$. Therefore, $x \in \{y\}^{C}$ where $\{y\}^{C}$ is Ip-open and $y \notin \{y\}^{C}$. Thus, X is a $Ip-T_{1}$ space.

3.3 *Ip*-*T*₂**Space**(*Ip*-Hausdorff)

Definition 3.3.1 An ideal topological space (X, τ, I) , is said to be Ip- T_2 space(Ip-Hausdorff) if for each pair of distinct points x, y of X, there exists an Ip-open sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.

Lemma 3.3.2 Every T_2 space in an ideal topological space is a I_p - T_2 space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) , and *X* bea T_2 space. Then, there exists a pair of open sets *U*, *V* in *X* such that $x \in U$ and $y \in V$ and $U \cap V = \Phi$. Since every open set is an *Ip*-open set, therefore *U* and *V* are *Ip*-open sets where $x \in U$ and $y \in V$ and $U \cap V = \Phi$. This implies (X, τ, I) , is a *Ip*- T_2 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.3.3 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a $Ip-T_2$ space but not T_2 space. Since the intersection of open sets $\{b\}$ and $\{b, c\}$ is nonempty.

Lemma 3.3.4 Every I_{p-T_2} space in an ideal topological space is I_{g-T_2} space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) , and *X* bea Ip- T_2 space. Then, there exists a pair of *Ip*-opensets *U*, *V* in *X* such that $x \in U$ and $y \in V$ and $U \cap V = \Phi$. Since every *Ip*-open set is an *Ig*-open set, therefore *U* and *V* are *Ig*-open sets where $x \in U$ and $y \in V$ and $U \cap V = \Phi$. This implies (X, τ, I) , is a Ig- T_2 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.3.5 Consider the ideal topological space (X, τ, I) , where $X=\{a,b,c\}$ with $\tau = \{X, \Phi, \{b,c\}\}$ and $I=\{\Phi, \{a\}\}$. Then, X is a $Ig-T_2$ space but not $Ip-T_2$ space. Since the intersection of an Ip-open sets $\{b,c\}$ and X is nonempty.

Lemma 3.3.6 Every *Ip*- T_2 space in an ideal topological space is a αI_g - T_2 space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) , and X bea $Ip-T_2$ space. Then, there exists a pair of an Ip-open sets U, V in X such that $x \in U$ and $y \in V$ and $U \cap V = \Phi$. Since every Ip-open set is an αIg -open set, therefore U and V are αIg -open setswhere $x \in U$ and $y \in V$ and $U \cap V = \Phi$. This implies (X, τ, I) , is a $\alpha Ig-T_2$ space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.3.7 Consider the ideal topological space (X, τ, I) , where $X=\{a,b,c\}$ with $\tau = \{X, \Phi, \{a,c\}\}$ and $I=\{\Phi, \{b\}\}$. Then, X is a αIg - T_2 space but not Ip- T_2 space. Since the intersection of Ip-open sets $\{a,c\}$ and X is nonempty.

Lemma 3.3.8 Every I_{p-T_2} space in an ideal topological space is a Ir_{g-T_2} space.

Proof. Let *x* and *y* be two distinct points in (X, τ, I) , and *X* bea Ip- T_2 space. Then, there exists a pair of an *Ip*-open sets *U*, *V* in *X* such that $x \in U$ and $y \in V$ and $U \cap V = \Phi$. Since every *Ip*-open set is an *Irg*-open set, therefore *U* and *V* are *Irg*-open sets where $x \in U$ and $y \in V$ and $U \cap V = \Phi$. This implies (X, τ, I) , is a *Irg*- T_2 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.3.9 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b, c\}\}$ and $I = \{\Phi, \{a\}\}$. Then, X is a *Irg-T*₂ space but not *Ip-T*₂ space. Since the intersection of an *Ip*-open sets $\{b, c\}$ and X is nonempty.

Lemma 3.3.10 Every I_{p-T_2} space in an ideal topological space is a I_{p-T_1} space.

Proof. Suppose X is a Ip- T_2 space, then for distinct points x and y in X there exist an Ip-open sets G and H such that $G \cap H = \Phi$. Therefore, $x \in G$, $y \notin G$ and $y \in H$, $x \notin H$. Thus, X is a Ip- T_1 space.

The converse of the above lemma need not be true in general. This can be seen in the following example:

Example 3.3.11 Consider the ideal topological space (X, τ, I) , where $X = \{a, b, c\}$ with $\tau = \{X, \Phi, \{b\}, \{a, b\}, \{b, c\}\}$ and $I = \{\Phi, \{b\}\}$. Then, X is a Ip- T_1 space but not T_2 space. Since the intersection of an Ip-open sets $\{a, b\}$ and $\{a, c\}$ is nonempty.

Theorem 3.3.12 Every subspace of a $Ip-T_2$ space is also $Ip-T_2$ space.

Proof. Let X be $Ip-T_2$ space and let Y be a subspace of X.Let $a, b \in Y \subseteq X$ with $a \neq b$. By hypothesis, there exist an Ip-open sets G, H in X such that $a \in G$ and $b \in H$, $G \cap H = \Phi$. By definition of subspace, $G \cap Y$ and $H \cap Y$ are Ip-open sets in Y. Further $a \in G$, $a \in Y$ implies $a \in G \cap Y$ and $b \in H$, $b \in Y$ implies $b \in H \cap Y$. Therefore, $G \cap Y$ and $H \cap Y$ are disjoint Ip-open sets in Y such that $a \in G \cap Y$ and $b \in H \cap Y$. Thus, Y is a $Ip-T_2$ space.

Theorem 3.3.13 If $\{x\}$ is *Ip*-closed in *X*, for every $x \in X$, then *X* is *Ip*-*T*₂ space.

Proof. Let *x*, *y* be two distinct points of X such that $\{x\}$ and $\{y\}$ are *Ip*-closed. Then, $\{x\}^{C}$ and $\{y\}^{C}$ are *Ip*-open in X such that $y \in \{x\}^{C}$ but $x \notin \{x\}^{C}$ and $x \in \{y\}^{C}$ but $y \notin \{y\}^{C}$. This implies, $\{x\}^{C} \cap \{y\}^{C} = \Phi$. Hence X is *Ip*-*T*₂ space.

Theorem 3.3.14 If X is $Ip-T_2$ space, then for $y \neq x \in X$, there exist an Ip-open set G such that $x \in G$ and $y \notin cl_P(G)$.

Proof. Let $x, y \in X$ such that $y \notin x$. Since X is $Ip-T_2$ space, there exist disjoint Ip-open sets G and H in X such that $x \in G$ and $y \in H$. Therefore H^C is Ip-closed set such that $cl_P(G) \subseteq H^C$. Since $y \notin H$, we have $y \notin H^C$. Hence $y \notin cl_P(G)$.

Proposition 3.3.15 Let $f, g: (X, \tau, I) \longrightarrow (Y, \sigma, J)$ be *Ip*-continuous maps and *Y* be a *Ip*-*T*₂ space. Then, $\{x \in X | f(x) = g(x)\}$ is a *Ip*-closed set.

Proof. Let $A = \{x \in X | f(x) \neq g(x)\}$ and suppose $x \in A$. Since $f(x) \neq g(x)$, there are *Ip*-open sets *U*, *V* in *Y* such that $f(x) \in U$, $g(x) \in V$ and $U \cap V = \Phi$. Let $W = f^{-1}(U) \cap g^{-1}(V)$. Then, *W* is an *Ip*-open and $x \in W$. Moreover, $W \subseteq A$. Thus *A* is an *Ip*-open, so $\{x \in X | f(x) = g(x)\}$ is a *Ip*-closed set. **Theorem 3.3.16** Let $f : (X, \tau, I) \longrightarrow (Y, \sigma, J)$ be a bijective, *Ip*-open map between the ideal topological spaces (X, τ, I) and (Y, σ, J) . If *X* is a *T₂* space, then *Y* is a *Ip*-*T₂* space.

Proof. Suppose that *X* is a T_2 space and let $x, y \in X$ be distinct points. Then, there exist disjoint open sets *G*, *H* in *X*, such that $x \in G$, $y \in H$. Since *f* is an *Ip*-open map, $f(x) \in f(G)$ and $f(y) \in f(H)$, where f(G), f(H) are *Ip*-open sets in (Y, σ, J) . Now, $f(G) \cap f(H) = f(G \cap H) = f(\Phi) = \Phi$. Therefore *Y* is a *Ip*- T_2 space.

Theorem 3.3.17 Let $f : (X, \tau, I) \longrightarrow (Y, \sigma, J)$ be a one to one, *Ip*-continuous map between ideal topological space (X, τ, I) and (Y, σ, J) and *Y* being a T_2 space. Then, X is a *Ip*- T_2 space. **Proof.** Let $x, y \in X$ be distinct points. Then $f(x), f(y) \in Y$ are distinct points. Since Y is a T_2 space, there exist disjoint open sets $U, V \in Y$ such that $f(x) \in U, f(y) \in V$. Then, $x \in f^1(U)$ and $y \in$ $f^1(V)$. Since f is *Ip*-continuous map, $f^1(U)$ and $f^1(V)$ are Ip-open sets. Now, $f^1(U) \cap f^1(V) =$ $f^1(U \cap V) = f^1(\Phi) = \Phi$. Therefore, X is a *Ip*- T_2 space.

CONCLUSIONS

The *Ip*-separation axiom, which has Ip- T_0 space, Ip- T_1 space, and Ip- T_2 space (*Ip*-Hausdorff space) was developed to define and explore the separation axioms in ideal topological spaces in a new way. In addition, we looked at certain important themes and their interconnections with other existing separation axioms.

ACKNOWLEDGMENTS

We gratefully acknowledge the referees' suggestions for improving this paper.

REFERENCES

Balaji, R., Rajesh, N. (2013). Some new separation axioms in ideal topological spaces. *IJERT*, 2(4), 38-48.

Poongothai, K., Stella Irene Mary, J. (2014). g-separation axioms on ideal topological spaces. *IJMA*, 6(1), 1-9.

Suriyakala, S., Vembu, R. (2016). On separation axioms in ideal topological spaces. *Malaya Journal of Matematik* 4(2), 318-324.

Kuratowski, K. (1966). Topology, Vol I. Academic Press New York.

Vaidynathaswamy, R. (1945). The localization theory in set topology. *Proc.IndianAcad.Sci.Math.Sci*, 20, 51-61.

Dontchev, J. (1995). On Hausdorff Spaces via Ideals and I-irresolute Functions. *Annals of New York Academy of Sciences*, 767, 28-38.

Dontshev J., Ganster, M., and Noiri, T. (1999). Unified approach of generalized closed sets via topological ideals. *Math.Japan*, 49, 395-401.

Navaneethakrishnan, M., Sivaraj, D. (2010). Regular generalized closed sets in ideal topological spaces. *Journal of Advanced Research in Pure Mathematics*, 2(3), 24-33.

Maragathavalli, D., Vinothini, D. (2018). α Ig-separation axioms in ideal topological space. *Asian Research Journal of Mathematics*, 9(2), 1-8.