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INTRODUCTION  

 

Separation axioms play a major role in topological space analysis. The separation axioms deal 

with the use of topological concepts to distinguish among disjoint sets and distinct points. In 

topological spaces, there are many different forms of separation axioms. We primarily discuss 

T0 space, T1 space, and T2space(Hausdorff space) spaces in topological spaces. Separation 

axioms between T0 space, T1 space, and T2 space(Hausdorff space) are the focus of several 

topologists[1,2,3]. 

Several studies were conducted in the context of ideal topological spaces after the concept of 

ideals was introduced. In 1930, Kuratowski [4] and Vaidyanathasamy [5] were the first to 

bring up the concept of ideals in topological spaces. The separation axiom in ideal topological 

spaces was presented by Dontchev [2] in 1995, and it has since been improved by a number 

of scholars. 

In this study, Ip-open sets are used to establish a new kind of separation axiom in ideal 

topological spaces, called Ip-separation axioms. In ideal topological space, this includes Ip-T0 

space, Ip-T1 space, and  Ip-T2 space(Hausdorff space). The known implications of these 

axioms among themselves and with other axioms are examined, as well as some of their most 

important features. 

 

METHODOLOGY 

 

Definition 2.1 An ideal I on a topological space (X ,τ) is a nonempty collection of subsets of 

X which satisfies the following properties: 

1) A∊I and B⊆ A implies B∊I. 

2) A ∊I and B∊I implies A⋃B∊I. 

If  I is an ideal on X, then (X, τ, I) is called an ideal topological space. 

Definition 2.2 A subset A of an ideal topological space (X, τ, I) is said to be Ip-closed set if 

A* ⊆ U whenever A⊆U and U is preopen. 

We define the complement of an Ip-closed set as being an Ip-open set. 

 

Definition 2.3 Subspace ideal Topology 

Let (X, τ, I) be an ideal topological space. If Y  is a subset of X , then the collection τY = {I0 ⋃ 

Y | I0 ∊ I} is an ideal on Y and by (Y,τY , IY) is called the subspace ideal topology. 

Definition 2.4  Ip-Irresolute Map 

Let (X, τ, I) and (Y, σ, J) be two ideal topological spaces. A map f : (X, τ, I)               (Y, σ, J) is 

called Ip-irresolute if  f-1(V ) is a Ip-closed set in (X, τ, I) for every Ip-closed set V in (Y, σ, J). 

Definition 2.5 An ideal topological space (X, τ, I) is said to be 

1) Ig-T0 space [7] if for each pair of distinct points x, y of X, there exists an Ig-open set 

containing one point but not the other . 

2) Irg-T0 space [8] if for each pair of distinct points x, y of X, there exists an Irg-open set 

containing one point but not the other . 

3) αIg-T0 space [9] if for each pair of distinct points x, y of X, there exists an αIg-open 

set containing one point but not the other . 

Definition 2.6 An ideal topological space (X, τ, I) is said to be 

1) Ig-T1 space [7]  if for each pair of distinct points x, y of X, there exists a pair of Ig-

open sets, one containing x but not y and the other containing y but not x. 

2) Irg-T1 space [8] if for each pair of distinct points x, y of X, there exists a pair of Irg-

open sets, one containing x but not y and the other containing y but not x. 
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3) αIg-T1 space [9]  if for each pair of distinct points x, y of X, there exists a pair of αIg--

open sets, one containing x but not y and the other containing y but not x. 

Definition 2.7 An ideal topological space (X, τ, I) is said to be 

1) Ig-T2 space [7]   if for each pair of distinct points x, y of X, there exists an Ig-open sets 

U and V such that x∊U, y∊V and U⋂V = Φ. 

2) Irg-T2 space [8]  if for each pair of distinct points x, y of X, there exists an Irg-open 

sets U and V such that x∊U, y∊V and U⋂V = Φ. 

3) αIg-T2 space [9]  if for each pair of distinct points x, y of X, there exists an αIg-open 

sets U and V such that x∊U, y ∊V and U⋂V = Φ. 

 

RESULTS  

 

3.1 IP-T0 Space 

 

Definition 3.1.1 An ideal topological space (X, τ, I) is said to be Ip-T0 space if for each pair of 

distinct  

points x, y of X, there exists an Ip-open set containing one point but not the other. 

Lemma 3.1.2 Every T0 space in an ideal topological space is a Ip-T0 space. 

Proof. Let x and y be two distinct points in (X, τ, I) and X bea T0 space. Then, there exists an 

open set V such that x∊ V and y∉V. Since every open set is a Ip-openset, therefore V is an Ip-

open set where x ∊V and y∉V. This gives, (X, τ, I) is a Ip-T0 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.1.3 Consider the ideal topological space (X, τ, I) where X={a,b,c} with τ ={X, Φ, 

{b,c}} and I={Φ,{b}}.Then, X  is a Ip-T0 space but not T0 space. Since b and c are contained 

in all the open sets of X. 

Lemma 3.1.4 Every Ip-T0 space in an ideal topological space is a Ig-T0 space. 

Proof .Let x and y be two distinct points in (X, τ, I) and X  be a Ip-T0 space. Then, there exists 

an Ip-T0 -open set V such that x∊V and y∉V. Since every Ip-open set is an Ig-open set, 

therefore V is an Ig-open set where x∊ V and y∉V. This gives, (X, τ, I) is aIg-T0 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.1.5 Consider the ideal topological space (X, τ, I), where X={a,b,c} with 

τ={X,Φ,{b,c}} and I={Φ,{a}}. Then, X  is aIg-T0 space but not Ip-T0 space. Since b and c are 

contained in all the Ip-open sets of X. 

Lemma 3.1.6 Every Ip-T0  space in an ideal topological space is a αIg- T0  space. 

Proof. Let x and y be two distinct points in (X, τ, I) and X be a Ip-T0  space. Then, there exists 

an Ip-open set V such that x ∊V and y ∉V. Since every Ip-open set is an αIg-open set, 

therefore V is an αIg-open set where x ∊V and y ∊ V. This gives, (X, τ, I) is a αIg-T0 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.1.7 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ 

={X,Φ,{b},{a,c}} and I= {Φ,{b}}. Then, X is a αIg-T0 space but not Ip-T0  space. Since a and 

c are contained in the Ip-open sets X and {a,c} of X. 

Lemma 3.1.8 Every Ip-T0  space in an ideal topological space is a Irg-T0 space. 

Proof. Let x and y be two distinct points in (X, τ, I) and X be a Ip-T0  space. Then, there exists 

an Ip-open set V such that x∊ V and y∉V. Since every Ip-open set is an Irg-open set, therefore 

V is an Irg-open set where x∊V and y∉V. This gives, (X, τ, I) is a Irg- T0 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.1.9 Consider the ideal topological space (X, τ, I) where X={a,b,c} with τ={X, Φ, 

{b,c}} and I={Φ,{a}}. Then, X is a Irg- T0 space but not Ip-T0  space. Since b and c are 

contained in all the Ip-open sets of X. 
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Theorem 3.1.10 An ideal topological space (X, τ, I) is an Ip-T0 space if and only if Ip-closure 

of distinct points are distinct. 

Proof.Let x and y be two distinct points in X and X  be an Ip-T0 space. Then, there exists an 

Ip-open set V such that x∊V  but y∉V.  Also x ∉VC  and y∉VC where VC is a Ip-closed set in X. 

Since clP({y}) is the intersection of all Ip-closed sets which contains y, y ∊ clP({y}) but 

x∉clP({y}) as x∉VC. Thus, clP({x}) ≠clP({y}). 

Conversely, suppose that for any pair of distinct points x and y in X, clP({x}) ≠clP({y}). Then, 

there exists at least one point z∊ X such that z∊clP({x}) but z∉clP({y}). If x∊ clP({y}), clP({x}) 

⊂clP({y}), then z ∊clP({y}), which is a contradiction. Hence x∉clP({y}). Now, x∉clP({y}) 

implies x ∊ (clP({y}))C, which is an Ip-open set in X containing x but not y. Hence X is a Ip-T0 

space. 

Theorem 3.1.11   Every subspace of a Ip-T0 space is a Ip-T0 space. 

Proof. Let X be a aIp-T0 space and Y be a subspace of X.Let x, y be two distinct points of Y. 

Since Y⊆X and X is a Ip-T0 space, there exists an Ip-open set V such that x ∊V  but y∉ V. Then, 

there exists an Ip-open set V⋂Y in Y which contains x but does not contain y. Hence Y is a Ip-

T0 space. 

Theorem 3.1.12 Let f : (X, τ, I)            (Y, σ, J) be a Ip-irresolute bijective map. If  Y is a Ip-T0 

space then X is  Ip-T0 space. 

Proof. Assume that Y is a Ip-T0 space. Let u, v be two distinct points of Y. Since f is a 

bijection, for every x, y∊X such that  f-1(u) = x and f-1(v )= y. Since Y is a Ip-T0 space, there 

exists an Ip-open set H in Y such that u∊ H but v∉H. Since f is Ip-irresolute,  f-1(H)  is a Ip-

open set in X containing f(x) = u but not containing f(y) = v. Thus, there exists an Ip-open set  

f-1(H)  in X such that x∊  f-1(H) but  y ∉  f-1(H)  and hence X is a Ip-T0 space. 

 

3.2 Ip-T1 Space 

 

Definition 3.2.1 An ideal topological space (X, τ, I) is said to be Ip-T1 space if for each pair of 

distinct points x, y of X, there exists a pair of  Ip-open sets, one containing x but not y and the 

other containing y but not x. That is, An ideal topological space X is a Ip-T1 space if for any x, 

y∊X with x ≠y, there exist an Ip-open sets G, H such that x∊G, y∉G and y∊H, x∉ H. 

Lemma 3.2.2  EveryT1 space in an ideal topological space is a Ip-T1 space. 

Proof. Let x and y be two distinct points in (X, τ, I) and X be a T1space. Then, there exists a 

pair of open sets U, V in X such that x∊U and y∉U, y∊V and x∉V. Since every open set is an 

Ip-open set, therefore U and V are Ip-open sets where x∊U and y∉ U, y∊ V and x∉V . This 

gives, (X, τ, I) is a Ip-T1 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.2.3  Consider the ideal topological space (X, τ, I) where X={a,b,c} with 

τ={X,Φ,{b},{a,b},{ b,c}} and I= {Φ,{b}}. Then, X is a Ip-T1space but not T1 space.  Since 

there is no open set containing b but not containing a. 

Lemma 3.2.4  Every Ip-T1space in an ideal topological space is a Ig-T1 space. 

Proof :Let x and y be two distinct points in (X, τ, I) and X bea Ip-T1space. Then, there exists a 

pair of Ip-opensets U, V in X such that x ∊ U and y ∉ U, y ∊ Vand x ∉V. Since every Ip-open 

set is an Ig-openset, therefore U and V are Ig-open set where x ∊ U andy ∉ U, y ∊ V and x 

∉V. This gives, (X, τ, I) is a Ig-T1space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.2.5 Consider the ideal topological space (X, τ, I), where  X={a,b,c} with τ ={X, Φ, 

{b,c}} and I={Φ,{a}}. Then, X  is aIg-T1space but notIp-T1space. Since there is no Ip-open 

set containing b but not containing c. 

Lemma 3.2.6 Every Ip-T1space in an ideal topological space is a αIg-T1space. 

Proof. Let x and y be two distinct points in (X, τ, I) and X  be a Ip-T1space. Then, there exists 

a pair of Ip-open sets U, V in X such that x∊U and y∉U, y∊V and x∉V . Since every Ip-open 
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set is an αIg-open set, therefore U and V are αIg -open sets where x∊U and y∉U, y∊V and 

x∉V. This gives  (X, τ, I) is a αIg-T1space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.2.7 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ={X, 

Φ,{a,c}} and I={Φ,{b}}. Then, X is a αIg-T1spacebut not Ip-T1space. Since there is no Ip-

open set containing a but not containing c. 

Lemma 3.2.8 Every Ip-T1space in an ideal topological space is a Irg-T1space. 

Proof. Let x and y be two distinct points in (X, τ, I), and X bea Ip-T1space. Then, there exists 

a pair of Ip-opensets U,V in X such that x ∊ U and y ∉ U, y ∊ Vand x ∉ V. Since every Ip-

open set is an Irg-open set, therefore U and V are Irg-open set where x ∊ Uand y ∉ U, y ∊ V 

and x ∉V. This gives, (X, τ, I), is a Irg-T1space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.2.9 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ={X, Φ, 

{b,c}} and I={Φ,{a}}. Then, X is a Irg-T1 space but not Ip-T1space. Since there is no Ip-open 

set containing b but not containing c. 

Lemma 3.2.10 Every Ip-T1space in an ideal topological space is a Ip-T0 space. 

Proof. Suppose X is a Ip-T1space, then for distinct pointsx and y in X, there exists an Ip-open 

sets G and H such that x∊G, y∉G and y∊H, x∉H. Since G⋂H = Φ, x∊G and y ∊H. Then,either 

x∊G, y∉G or y∊H, x∉H. Thus, X is a Ip-T0 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.2.11 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ={ X, 

Φ,{b,c}} and I={Φ,{b}}.Then, X  is a Ip-T0 space but not Ip-T1space. Since for the distinct 

points b and c there exists a pair of Ip-open sets {c} and {b,c} one contain b but not c and the 

other containing both b and c. 

Theorem 3.2.12 Every subspace of a Ip-T1space is also Ip-T1space. 

Proof. Let X be a Ip-T1space and let Y be a subspace ofX. Let x, y∊Y⊆X such that x≠y. By 

hypothesis X is Ip-T1space, hence there exists an Ip-open sets U, V in X such that x∊U and 

y∊V, x∉V and y∉U. By definition of subspace, U⋂Y and V⋂Y are Ip-open sets in Y. Further, 

x∊U, x∊Y implies x∊U⋂Y also y∊V, y∊Y implies y∊V⋂Y. Thus, there exist an Ip-open sets 

U⋂Y and V⋂Y in Y such that x∊U⋂Y, y∊V ⋂ Y and x∊V⋂Y, y∉U⋂Y. Therefore, Y is a Ip-

T1space. 

Theorem 3.2.13 Let f : (X, τ, I)           (Y, σ, J) be an injectiveand Y be a Ip-T1space. If f is Ip-

irresolute,then X is a Ip-T1space. 

Proof. Assume that Y is a Ip-T1space. Let x, y∊Y suchthat x≠y. Then, there exists a pair of Ip-

open setsU, V∊ Y such that f(x) ∊U and f(y) ∊ V, f(x) ∉V and f(y) ∉U which implies x∊ f-1(U), 

y∊ f-1(V ) and x∉f-1(V ), y∉f-1(U ) Sincef is Ip-irresolute. Therefore, f-1(U) and f-1(V ) are Ip-

open sets in X. Thus X is a Ip-T1space. 

Theorem 3.2.14 An ideal topological space X is said to be Ip-T1space if and only if every 

singleton subset of X is Ip-closed set. 

Proof. Suppose that X is a Ip-T1space and a∊ X. We shallprove that {a}C is an Ip-open set. 

Let x∊{a}C. Then, x≠a, so there exists an Ip-open setUX such that x∊UX but a∉ UX. That is, 

x∊UX⊆ {a}C. Thus, ⋃ {x} ⊆⋃{ GX : x∊ {a}C} ⊆ {a}C. That is, {a}C = ⋃{ GX : x∊ {a}C}. 

Since ⋃{GX : x∊ {a}C} is Ip-open, {a}C is Ip-open. 

Conversely suppose that {a} is a Ip-closed set for any a ∊X. Let x, y∊X with x≠y. Then, y∊ 

{x}C where {x}C is Ip-open and x ∊ {x}C. Therefore, x ∊ {y}C where {y}C is Ip-open and y∉ 

{y}C. Thus, X is a Ip-T1 space. 

 

3.3 Ip-T2Space(Ip-Hausdorff) 

 

x∊{a}C 
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Definition 3.3.1 An ideal topological space (X, τ, I), is said to be Ip-T2 space(Ip-Hausdorff) if 

for each pair of distinct points x, y of X, there exists an Ip-open sets U andV such that x∊U, 

y∊V and U⋂V =Φ. 

Lemma 3.3.2 Every T2  space in an ideal topological space is a Ip-T2 space. 

Proof. Let x and y be two distinct points in (X, τ, I), and X bea T2 space. Then, there exists a 

pair of open sets U, V in X such that x∊U and y∊V and U⋂V =Φ. Since every open set is an 

Ip-open set, thereforeU and V are Ip-open sets where x∊U and y∊V and U ⋂ V =Φ. This 

implies (X, τ, I), is a Ip-T2 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.3.3 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ={X, 

Φ,{b},{a,b},{b,c}} and I= {Φ,{b}}. Then, X is a Ip-T2space but not T2 space. Since the 

intersection of open sets {b} and {b,c} is nonempty. 

Lemma 3.3.4 Every Ip-T2 space in an ideal topological space is Ig-T2 space. 

Proof.  Let x and y be two distinct points in (X, τ, I), and X bea Ip-T2 space. Then, there exists 

a pair of Ip-opensets U, V in X such that x∊U and y∊V and U⋂V = Φ. Since every Ip-open set 

is an Ig-open set,therefore U and V are Ig-open sets where x∊U and y ∊V and U⋂V = Φ. This 

implies (X, τ, I), is a Ig-T2 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.3.5 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ ={X, 

Φ,{b,c}} and I={Φ,{a}}. Then, X is a Ig-T2 space but not Ip-T2 space. Since the intersection 

of an Ip-open sets {b,c} and X is nonempty. 

Lemma 3.3.6 Every Ip-T2 space in an ideal topological space is a αIg-T2 space. 

Proof. Let x and y be two distinct points in (X, τ, I), and X bea Ip-T2 space. Then, there exists 

a pair of an Ip-open sets U, V  in X such that x∊U and y∊V andU⋂V = Φ. Since every Ip-open 

set is an αIg-open set, therefore U and V are αIg-open setswhere x∊ U and y∊V and U⋂V = Φ. 

Thisimplies (X, τ, I), is a αIg-T2 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.3.7 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ 

={X,Φ,{a,c}} and I={Φ,{b}}. Then, X is a αIg-T2 space but not Ip-T2 space. Since the 

intersection of Ip-open sets {a,c} and X is nonempty. 

Lemma 3.3.8 Every Ip-T2 space in an ideal topological space is a Irg-T2 space. 

Proof. Let x and y be two distinct points in (X, τ, I), and X  bea Ip-T2 space. Then, there exists 

a pair of an Ip-open sets U, V in X such that x∊ U and y∊V and U⋂V = Φ. Since every Ip-open 

set is an Irg-open set, therefore U and V are Irg-open sets where x∊U and y∊V and U⋂V = Φ. 

This implies (X, τ, I), is a Irg-T2 space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.3.9 Consider the ideal topological space (X, τ, I), where X={a,b,c} with 

τ={X,Φ,{b,c}} and I={Φ,{a}}. Then, X is a Irg-T2 space but not Ip-T2 space. Since the 

intersection of an Ip-open sets {b,c} and X is nonempty. 

Lemma 3.3.10 Every Ip-T2 space in an ideal topological space is a Ip-T1 space. 

Proof .Suppose X  is a Ip-T2 space, then for distinct points x and y in X  there exist an Ip-open 

sets G and H such that G⋂H = Φ. Therefore, x∊G, y∉G and y∊H, x∉H. Thus, X is a Ip-

T1space. 

The converse of the above lemma need not be true in general. This can be seen in the 

following example: 

Example 3.3.11 Consider the ideal topological space (X, τ, I), where X={a,b,c} with τ={X, 

Φ,{b},{a,b},{b,c}} and I= {Φ,{b}}. Then, X is a Ip-T1 space but not T2 space. Since the 

intersection of an Ip-open sets {a,b} and {a,c} is nonempty. 

Theorem 3.3.12 Every subspace of a Ip-T2 space is also Ip-T2 space. 
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Proof. Let X be Ip-T2 space and let Y be a subspace of X.Let a, b ∊Y⊆X with a≠b. By 

hypothesis,there exist an Ip-open sets G, H in X such that a ∊Gand b∊H, G⋂H = Φ. By 

definition of subspace,G⋂Y and H⋂Y are Ip-open sets in Y. Further a∊G, a∊Y implies a 

∊G⋂Y and b∊H, b∊ Y implies b∊H⋂Y. Therefore, G⋂Y and H⋂Yare disjoint Ip-open sets in Y 

such that a∊G⋂Y and b∊H⋂ Y. Thus, Y is a Ip-T2 space. 

Theorem 3.3.13 If {x} is Ip-closed in X, for every x∊X, then X is Ip-T2 space. 

Proof. Let x, y be two distinct points of X such that {x} and{y} are Ip-closed. Then, {x}C and 

{y}C areIp-open in X such that y∊ {x}C but x∉{x}C and x∊ {y}C but y∉ {y}C. Thisimplies, {x}C 

⋂ {y}C = Φ. Hence X is Ip-T2 space. 

Theorem 3.3.14 If X  is Ip-T2 space, then for y≠x∊X, thereexist an Ip-open set G such that 

x∊G and y∉clP(G). 

Proof. Let x, y∊X such that y ∉x. Since X is Ip-T2 space, there exist disjoint Ip-open sets G 

and H in X such that x∊ G and y ∊H. Therefore HC is Ip-closed set such that clP(G) ⊆HC. 

Since y∊H, we have y ∉ HC. Hence y∉clP(G). 

Proposition 3.3.15 Let f, g: (X, τ, I)           (Y, σ, J) be Ip-continuous maps and Y be a Ip-T2 

space. Then, {x∊X | f(x) = g(x)} is a Ip-closed set. 

Proof. Let A = {x ∊X | f(x) ≠g(x)} and suppose x∊ A.Since f(x) ≠g(x), there are Ip-open sets U, 

V in Y such that f(x) ∊U, g(x) ∊V and U⋂V = Φ.Let W = f-1(U) ⋂g-1(V) . Then, W is an Ip-

openand x∊W. Moreover, W⊆A. ThusA is an Ip-open, so {x∊X | f(x) = g(x)} is a Ip-closed set. 

Theorem 3.3.16 Let f : (X, τ, I)          (Y, σ, J) be a bijective,Ip-open map between the ideal 

topological spaces (X, τ, I) and (Y, σ, J) . If X is a T2 space, then Y is a Ip-T2 space. 

Proof. Suppose that X is a T2 space and let x, y∊ X  be distinct points. Then, there exist 

disjoint open sets G, H in X, such that x ∊G, y∊H. Since f  is an Ip-open map, f(x) ∊f(G) and 

f(y) ∊f(H), where f(G), f(H) are Ip-open sets in (Y, σ, J). Now, f(G) ⋂f(H) = f(G⋂H) = f(Φ) = 

Φ. Therefore Y is a Ip-T2  space. 

Theorem 3.3.17 Let f : (X, τ, I)           (Y, σ, J) be a one to one,Ip-continuous map between 

ideal topological space (X, τ, I) and (Y, σ, J) and Ybeing a T2  space. Then, X is a Ip-T2 space. 

Proof.  Let x, y∊X be distinct points. Then f(x), f(y) ∊Y are distinct points. Since Y is a T2 

space, thereexist disjoint open sets U, V∊Y such that f(x) ∊U, f(y) ∊V. Then, x∊f-1(U) and y∊ 
 f-1(V). Since f is Ip-continuous map, f-1(U) and f-1(V) are Ip-open sets. Now, f-1(U) ⋂f-1(V) = 

 f-1(U⋂V) = f-1(Φ) =Φ. Therefore, X is a Ip-T2space. 

 

CONCLUSIONS 

 

The Ip-separation axiom, which has Ip-T0 space, Ip-T1 space, and Ip-T2 space (Ip-Hausdorff 

space) was developed to define and explore the separation axioms in ideal topological spaces 

in a new way.In addition, we looked at certain important themes and their interconnections 

with other existing separation axioms. 
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