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INTRODUCTION 

Optimization influences every field such as Management, Mathematics, Accounting, Engineering 

and etc. Research uses either gradient or non-gradient based optimization methods for solving 

nonlinear forms of equation. However, research outcomes show that the gradient based methods 

give more accurate results than the other one. There are several optimization methods for 

handling constraint and unconstraint problems. For the purpose, several tools with optimization 

capabilities are available, namely, MS Excel solver, MATLAB,MathCAD, Mathamatica, Maple 

and etc. Those tools have been developed for a wide range of requirements using a specific 

algorithm. Sometimes it may not be suitable to handle the problem at hand. In particularly, 

fminuc- matlab function is used to handle unconstrained minimization class problems but it has 

several drawbacks; it can be used to execute one method at a time, need to pass method names as 

a parameter and it is not supported for alpha-finding method, it is difficult for analyzing or 

comparing output and finally it is a single function with limited features and it is difficult to 

understand by users.    

To overcome these issues, in this research study, an attempt is made to develop a user friendly 

MATLAB GUI tool to handle a specific problem of solving unconstrained minimization problem 

of quadratic form equation. This tool is featured with six unconstrained gradient methods. It has 

two parts one for finding the solution of the given problem and other one for analyzing the 

methods for the particular problem. This tool will be useful for both undergraduate students and 

researchers who are handling the specific problems.  

In this study, the principal objective is that of finding variance x for which a given function f(x) is 

minimized. It is true that a practical design problem would be rarely be unconstrained still, a 

study of this class of problems is important for the following reasons:  

 The constraints do not have significant influence in certain design problems.  

 Some of the powerful and robust methods of solving constrained minimization problems 

require the use of unconstrained minimization techniques.  

 The studies of unconstrained minimization techniques provide the basic understanding 

necessary for the study of constrained minimization methods.  

 The unconstrained minimization methods can be used to solve certain complex 

engineering analysis problems. For example, the displacement response (linear or 

nonlinear) of any structure under any specified load condition can be found by 

minimizing its potential energy. Similarly, the eigenvalues and eigenvectors of any 

discrete system can be found by minimizing the Rayleigh quotient. 
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METHODOLOGY 

Classification of Unconstrained Minimization Methods 

Several methods are available for solving an unconstrained minimization problem. These 

methods can be classified into two broad categories as direct search methods and descent 

methods. The direct search methods require only the objective function values but not the partial 

derivatives of the function in finding the minimum and hence are often called the non-gradient 

methods. The direct search methods are also known as zeroth-order methods since they use 

zeroth-order derivatives of the function. These methods are most suitable for simple problems 

involving a relatively small number of variables.  

These methods are, in general, less efficient than the descent methods. The descent techniques 

require, in addition to the function values, the first and in some cases the second derivatives of the 

objective function. Since more information about the function being minimized is used (through 

the use of derivatives), descent methods are generally more efficient than direct search 

techniques. The descent methods are known as gradient methods. Among the gradient methods, 

those requiring only first derivatives of the function are called first-order methods; those 

requiring both first and second derivatives of the function are termed second-order methods.  

Unconstrained Minimization Methods 

 Descent methods 

 Steepest descent (Cauchy) method, Fletcher–Reeves method, Newton’s method, Marquardt 

method, Quasi-Newton methods, Davidon Fletcher Powell method, Broyden Fletcher Goldfarb 

Shanno method 

General Approach 

All the unconstrained minimization methods are iterative in nature and hence they start from an 

initial trial solution and proceed toward the minimum point in a sequential manner. The iterative 

process is given by xi+1 = xi +λi *si, where xi is the starting point, si is the search direction, λi  is the 

optimal step length and xi+1  is the final point in iteration i. It is important to note that all the 

unconstrained minimization methods require an initial point x1 to start the iterative procedure, and 

differ from one another only in the method of generating the new point xi+1 (from xi) and in 

testing the point xi+1 for optimality. 

Indirect Search (Descent) Methods 

GRADIENT OF A FUNCTION 

The gradient of a function is an n-component vector given by 
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The gradient has a very important property. If we move along the gradient direction from any 

point in n-dimensional space, the function value increases at the fastest rate. Hence the gradient 

direction is called the direction of steepest ascent. Unfortunately, the direction of steepest ascent 

is a local property and not a global one. This is illustrated in Figure below, where the gradient 

vectors  ∇𝑓 evaluated at points 1, 2, 3, and 4 lie along the directions 11’, 22’, 33’, and 44’, 

respectively. Thus the function value increases at the fastest rate in the direction 11’ at point 1, 

but not at point 2. Similarly, the function value increases at the fastest rate in direction 22’ (33’) 

at point 2 (3), but not at point 3(4). In other words, the direction of steepest ascent generally 

varies from point to point, and if we make infinitely small moves along the direction of steepest 

ascent, the path will be a curved line like the curve 1-2-3-4 in Figure given below 

Since the gradient vector represents the direction of steepest ascent, the negative of the gradient 

vector denotes the direction of steepest descent. Thus any method that 3 makes use of the gradient 

vector can be expected to give the minimum point faster than one that does not make use of the 

gradient vector. All the descent methods make use of the gradient vector, either directly or 

indirectly, in finding the search directions. Before considering the descent methods of 

minimization, we prove that the gradient vector represents the direction of steepest ascent. 

 

Evaluation of the Gradient 

The evaluation of the gradient requires the computation of the partial derivatives
𝜕𝑓

𝜕𝑥𝑖
, 𝑖 = 1,2, … 𝑛. 

There are three situations where the evaluation of the gradient poses certain problems (i) The 

function is differentiable at all the points, but the calculation of the components of the gradient, 
𝜕𝑓

𝜕𝑥𝑖
, is either impractical or impossible (ii) The expressions for the partial derivatives  

𝜕𝑓

𝜕𝑥𝑖
, can be 

derived, but they require large computational time for evaluation (iii) The gradient ∇𝑓 is not 

defined at all the points. 

 In the first case, the forward finite-difference formula, 
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can be used to approximate the partial derivative 
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 at 𝑥𝑚. If the function value at the base point 𝑥𝑚 

is known, this formula requires one additional function evaluation to find
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additional function evaluations to evaluate the approximate gradient
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can use the central finite difference formula to find the approximate partial derivative 
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Newly developed Tool 

In the main window, if ‘Unconstrained method’ is selected, it will prompt another window where,  

 User can insert a function in the given textbox labeled as ’function’. (It’ll be allowing only 
quadratic functions.)  

 Then user can choose the unconstrained methods. 

 User can give the initial values of the variables. 

 User has to choose the step size and tolerance.  

 Then user can get the output of whole selected methods with iterations results and its 
graphical representation. 

 Last window will show all methods’ output in the same table for comparison.  



 
Figure 1 User Input 

 
Figure 2 Comparison wind

The figure 1 shows  input function 𝑥1
2 + 𝑥1𝑥2 +  𝑥2

2 and tolerance 0.01 and initial values 10, -

10 for 𝑥1, 𝑥2 respectively, with this selection of step size method as Goldensection and initial 

value for this step size method as 1 , -1 and tolerance as 0.01. In figure 3 shows the analysis part 

for whole six methods and its graphical outputs and analysis part for each method. This is easy to 

compare each method with figure 2 and suggest which method gives more accurate answer of the 

given problem.  

CONCLUSION 

 

The newly developed MATLAB tool is successfully in solving the unconstrained optimization 

problem of functions of the quadratic form. The comparison of the methods has successfully been 

done by this tool. Any order of the function can be minimized and find the optimum using this 

tool because it converts the function to quadratic form and solves it based on gradient based 

optimization methods. In the comparison, user can analye and identify the suitable alpha finding 

method for a specific problem using the output table “Final Answer”. This tool is very useful for 

researchers to verify their results by comparing all the gradient based methods at a time and the 

undergraduates to understand and compare popular optimization methods. 
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