
1

NOTIFICATION SENDING AS CROSS CUTTING CONCERN IN ENTERPRISE

APPLICATIONS

B. A. I. Sampath1, C.J. Basnayakege2

1Department of Electrical and Computer Engineering, Open University of Sri Lanka
2Department of Electrical and Computer Engineering, Open University of Sri Lanka

INTRODUCTION

Technology has made vast changes in society. People use very high tech devices in their day

to day life. Personal computers, mobile phones are some of them. Most software were built to

use as standalone applications in earlier days. Now the situation has changed and everything

functions as services which can be shared among many people. Software development

focuses on building applications which are more centralized and reusable. Design architecture

of software projects have become module based and different types of design concerns are

used to achieve it. Modules are standalone components which can be operated independently.

This approach has made many reusable components which can be reused with any other

development project.

Application developed for the business domain or any other domain has mainly focused on

increasing the productivity of the operations. In the same way the software development

company also followed different types of methodologies, technologies and standards to

increase the productivity of the software development projects. There are some aspect in the

application development that are considered as the cross cutting concern which means the

software concern that is external and orthogonal to the problem that a software component is

designed to address. Transaction handling, security, logging, error handling, synchronization,

memory allocation are some cross cutting concern in software development. We have

considered that notification sending process in the application as the cross cutting concern. It

is a different aspect of programming which should not interfere with the business logic. The

developer should not worry about the notification sending process in the business logic. This

requirement is satisfied with this project.

Most applications have a huge user base and the application interacts with users in different

ways. Most business domains have a primary requirement to send various types of

notifications to their users based on their activities. Identifying the various types of

notifications which are common to many applications and finding the medium by which it is

sent to the user and finally combining all these into one software component is the main

objective of this project. There are different types of medium available today to communicate

with others. Email (Electronic-mail), SMS (Short Message Service), MMS (Multimedia

Message Service) and Fax are some of them. Email and SMS are the most common medium

which is integrated to many applications to send messages to the end users.

Promotions, payments, offers, reminders and activities are some of the notification types

commonly sent in many applications. If any application needs to send a notification

mentioned previously, then the application has to facilitate such media integrations.

Integration of Email or SMS sending can be written as a separate package and reuse it in the

other classes or write it in a class which a particular operation processing is some of the way

to achieve it. This approach is the result of a more specific solution which can be used within

1Correspondences should be addressed to B. A. I. Sampath, Department of Electrical and

Computer Engineering, Open University of Sri Lanka

2

that project only because application logics are written to satisfy the scope of the business

domain. If the developer wants to use it in another separate software project there could be

many issues and modification to that particular coding to adapt it. Developing a more generic

software module and reusing it in any software development project saves time in the

development.

METHODOLOGY

We were concerned with a set of attributes before starting this project and searched whether

there were any alternatives which have already been developed to cater for all these attributes.

Following are those attributes: support more than one notification medium, support

concurrency, support scheduling, support bulk sending, support multimedia content (images

and templates) configurable with any service providers (Email and SMS service providers),

deliver under open source license.

We could find out some software components which support each of this attributes separately.

But none of the software components support all of these attributes at once. For example there

are a number of software components which support sending email integration into the

application. But none of them support concurrency, scheduling, bulk sending itself. All these

attributes depend on the way that the developer will do the coding. If there are any

requirements to schedule Email sending, then the developer has to think of a way to design

the correct approach, develop it and test it. It may take considerable man days even a team to

work on that. We focus on addressing this in our project development. We reused some of the

existing software components which supported above attributes rather than developing it from

scratch.

Notification API is integrated with two types of service providers. One such provider is

Simple Mail Transfer Protocol (SMTP) server and the other one is SMS gateway. The

developer can add configuration details of SMTP server in property file according to the

client requirements. Kannel has a rich set of features which are very useful in the

development process of sending SMS. The main advantage of it is that the developer can set

the Kannel configuration to any mobile service providers. Currently Notification API

supports one SMSC.

Notification jobs are stored in H2 memory database. Quartz scheduler runs in the same time

interval and checks whether that new notification has arrived to the database. If the

notification already came, then the scheduler will push the notification to the queue. Then the

separate thread will handle the sending notification. This underlying mechanism was

implemented with the design pattern called work stealing queue. This is the solution of IBM

for the multi-threading application to handle the load of tasks and keep the application

performance status higher. The notification API supports to send the Velocity email template

message with embedded inline images.

Notification API is distributed as a Java Archive (jar) file. It is supported for Java based

project development. Figure 1 depicts the component organization of the Notification API’s

notification engine. It communicated with some third party API in the run time.

3

Figure 1 Component Diagram of Notification API

RESULTS AND DISCUSSION

Notification API consists of couple of methods where the developer wants to call in the

coding. Rest of the operation is handled by the Notification API and it ensures that

notification is sent to the recipient. There are two classes inside the library which are

accessible to the outside developer after importing it to the project or after adding it as maven

dependency. Notification API has two service classes (MailSender and SMSSender) which

wrap all the internal services. Figure 2 and 3 depicts two methods which are more useful in

notification sending in the application development.

Figure 2 Send method of MailSender.java

Figure 3 Send method of SmsSender.java

Performance of the Notification API has increased by efficiently handling the concurrency.

The main design concern here is to queue each and every notification sending inside the

4

library. Work stealing queue pattern is implemented in the Notification API and it ensures

that a couple of threads are dedicated to execute notification sending job.

The following section specifies the nonfunctional requirements associated with the speed

which the Notification API shall function.

Capacity concerning the minimum number of objects the Notification API can support. The

Notification API shall support a minimum of 1 email to maximum of 500 emails at each

method call. The Notification API shall support a minimum of 1 SMS to maximum of 100

SMS at each method call. The system shall support a minimum of 10,000 simultaneous

interactions.

Latency concerning the maximum time that is permitted for the Notification API to execute

specific tasks (i.e. send email or sms). This is dependent on the bandwidth of the network.

Response time concerns the maximum time that is permitted for the Notification API to

respond to requests: All system responses shall occur within 30 seconds. Throughput

concerning how many executions of a given Notification API operation or use case path must

the system is able execute in a unit of time: To Be Determined.

CONCLUSIONS/RECOMMENDATIONS

Notification API has been developed to customize with any changes and further any

developer will be able to download the source and customize as it needs. It has already been

implemented in two types of notifications medium which is email and SMS. Anyone is

welcome to attach any enhancement with this API and used for their project developments.

NotificationJobRunner is responsible to notification scheduling and it is run as background

process. It is highly recommended to define these classes as bean if the project uses spring

framework. Figure 4 showed example bean configuration setting in the spring bean context

file.

Figure 4 Define Notification API service classes as spring beans

REFERENCES

Andreas Fink, Bruno Rodrigues, Stipe Tolj, Aarno Syvänen, Alexander Malysh, Lars

Wirzenius, and Kalle Marjola, 2009. Kannel 1.4.3 User’s Guide - Open Source WAP and

SMS gateway. [E-book] Available at: www.kannel.org/userguide.shtml

Java.net - The Source for Java Technology Collaboration, 2011. A Method for Reducing

Contention and Overhead in Worker Queues for Multithreaded Java Applications [online]

Available at: http://today.java.net/article/2011/06/14/method-reducing-contention-and-

overhead-worker-queues-multithreaded-java-applications

Quartz Scheduler - Enterprise Job Scheduler, 2011. Quartz Enterprise Job Scheduler

Cookbook [online] Available at: http://quartz-scheduler.org/documentation/quartz-

2.1.x/cookbook/

Developers.com, 2011. Java 5's BlockingQueue [online] Available at:

http://www.developer.com/java/ent/article.php/3645111/Java-5s-BlockingQueue.htm

file:///C:/Users/PRIYANTHA%20NAWARATHNE/Downloads/www.kannel.org/userguide.shtml
http://today.java.net/article/2011/06/14/method-reducing-contention-and-overhead-worker-queues-multithreaded-java-applications
http://today.java.net/article/2011/06/14/method-reducing-contention-and-overhead-worker-queues-multithreaded-java-applications
http://quartz-scheduler.org/documentation/quartz-2.1.x/cookbook/
http://quartz-scheduler.org/documentation/quartz-2.1.x/cookbook/
http://www.developer.com/java/ent/article.php/3645111/Java-5s-BlockingQueue.htm

5

H2 database, 2012. Tutorial [online] Available at:

http://www.h2database.com/html/tutorial.html

ACKNOWLEDGMENTS

I would like to give my gratitude to Dr. K. A. C. Udayakumar, Dr. L. S. K. Udugama and

Dr. (Mrs.) K. G. H. U. W. Rathnayake who are major characters of the Bachelor of Software

engineering program. Initial project proposal was accepted by them and their advice become

more helpful in all the milestones we have passed successfully.

Next I would like to give my gratitude to group members H.M.P.P. Senevirathna, R.M.E.A.

Rathnayaka, G.N.I. Garusinghe, W.A.D.C. Dinesh who gave me great support to successfully

complete the project.

http://www.h2database.com/html/tutorial.html

