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INTRODUCTION  

 

In the globalization era, the economic interdependence of the countries around the globe 

increases; it becomes necessary to understand the nature of exchange rate movements and its 

significant impact on countries performance with the rest of the world. Exchange rate plays a 

vital role in international trade and investment as they effect on prices of goods and services 

worldwide. An exchange rate is the price of one currency in terms of another currency. 

Therefore, movements in rate of exchange can have a significant impact on a particular 

country and its trading partners. Given the open, small and more import dependent nature of 

Sri Lankan economy will easily affected by exchange rate fluctuations.  Further, forecasting 

the rate of exchange is very important to assess the benefits and risks attached to international 

as well as Sri Lankan business environment. However, the empirical studies on this topic 

have been increasingly evolved in recent literature. Few studies (Hooper and Marquez, 1995; 

Bernard and Jensen, 2004) provide evidences related to exchange rate movements and its 

effect on trade flows. Still predicting the exchange rate movement is an unresolved issue in 

finance literature. This study is tried to fill this gap by analyzing exchange rate movement of 

Sri Lankan rupee – with world leading currencies (US dollar, Euro, British pound) price 

changes by employing Markov chain model. Thus, the main purpose of this study is to 

determine the propensity of increasing and decreasing the exchange rate. Doubleday et al. 

(2011) have analyzed stock market price trends by determining probabilities of the market 

transitions between various states. Deju Zhang et al. (2009) have studied on forecasting the 

China’s stock market trend based on Markov chain model approach. In Markov chain the 

outcome of an experiment depends only on the outcome of the previous experiment. 

Exchange rate also follows a random walk implies that the exchange rate changes are as 

independent of one another as the gain and losses. If we go through the application of Markov 

chain model, it will be useful to focus on understanding the usage of exchange rate. The 

exchange rate is used when simply converting one currency to another or for engaging in 

speculation or trading in the foreign exchange market. In this study the following objective 

was considered, to construct the two and four state Markov chain model for the movement of 

exchange rate data. Further, in order to estimate the transition probability matrix, the average 

transition periods and the prediction of the long run distribution for the exchange rate 

movement were used by the developed model. 

METHODOLOGY 

Data for this research were retrieved from secondary source published by 

www.exchangerates.org.uk. Based on the availability and consistency of the data, daily 

exchange rate value of Sri Lankan rupees (LKR) versus world leading currencies: US dollar, 

Euro, British pound was collected. It covers the recent time period from 6th October 2009 to 

24th November 2014 amounting to 1876 days. This study focuses on analysis of exchange rate 

using a discrete time stochastic model, namely a Markov chain. A stochastic process is a 

family of random variables {𝑋(𝑡), 𝑡 ∈ 𝑇}, where the parameter “𝑡” is running over a suitable 

index set 𝑇. The conditional distribution of  𝑋(𝑡𝑛) for given values of 

𝑋(𝑡1), 𝑋(𝑡2), … … , 𝑋(𝑡𝑛−1) dependence only on 𝑋(𝑡𝑛−1) is called Markov dependents. A 

discrete or continuous parameter stochastic process display the property of Markov 

dependents is called Markov process. A special kind of Markov process is a Markov chain. 

The discrete state space Markov process is called Markov chain. The conditional 

probability 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑝𝑖𝑗  is called the first step transition probability. For a 
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finite state Markov chain {𝑋𝑛} the transition probability 𝑝𝑖𝑗 can be represented by a matrix 

which is called transition probability matrix. With these transition probabilities, a  𝑘 × 𝑘  

matrix, 𝑃 = (𝑝𝑖𝑗), called the first step transition probability matrix of the Markov chain. 

𝑃 = (𝑝𝑖𝑗) = [

𝑝11 𝑝12

𝑝21 𝑝22
    

⋯ 𝑝1𝑘

⋯ 𝑝2𝑘… …
𝑝𝑘1 𝑝𝑘2

    
… …
⋯ 𝑝𝑘𝑘

] 

Each row of 𝑃 is the probability distribution relating to a transition from state 𝑖 to state 𝑗 and 

with the following properties: 0 ≤ 𝑝𝑖𝑗 ≤ 1 for all, 𝑖, 𝑗 and ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 = 1, for all 𝑖. 

A Markov chain is to have a steady state probability distribution if there exists a vector 𝜋 such 

that given a transition probability matrix 𝑃: 𝜋 = 𝜋𝑃. 
If all states of a chain communicate and are not periodic, then the chain is said to be ergodic.  

If a finite Markov chain is ergodic then  

lim
𝑛→∞

𝑃𝑛 = [

𝜋1 𝜋2

𝜋1 𝜋2
    

⋯ 𝜋𝑘

⋯ 𝜋𝑘… …
𝜋1 𝜋2

    
… …
⋯ 𝜋𝑘

] 

where 𝜋 = (𝜋1,  𝜋2, … , 𝜋𝑘) with 0 < 𝜋𝑗 < 1 and ∑ 𝜋𝑗
𝑘 
𝑗=1 = 1. 

This steady state probability vector 𝜋 can be viewed as the unique distribution of a random 

variable in the long-run. Also mean recurrent times 𝑚𝑗𝑗 are obtained by 𝑚𝑗𝑗 = 1 𝜋𝑗⁄ , for 

every 𝑗. 

 

MODEL CONSTRUCTION 

 

The data were arranged into two models of analysis such as two, four state Markov chain 

model and each study will be considered separately. Let 𝑌𝑛 be the rupees of exchange rate on 

𝑛𝑡ℎ day. Then the random variable 𝐷𝑛denoted by: 𝐷𝑛 = 𝑌𝑛−𝑌𝑛−1. 

 

Case-1: Each day was classified as indicating exchange rate rupee higher or lower than the 

previous day for the financial market, considering the movement from a category of jump up 

or jump down on a day to a category of jump up or jump down the next, thus letting 

classification of two states, namely: 

State 1 (jump up): Today’s exchange rate rupee is greater than the exchange rate rupee of the 

previous day 

State 2 (jump down): Today’s exchange rate rupee is less than or equal to exchange rate rupee 

of the previous day 

A sequence of daily changes on the state of the system may be able to form a binary random 

variable 𝑋𝑛  denoted by 

𝑋𝑛 = {
1,        if 𝐷𝑛 > 0,
2, if 𝐷𝑛 ≤ 0.

  

Therefore above random variable {𝑋𝑛} is known as a Markov chain with state space {1, 2}. 
 

Case-2: Based on the case-1 model, jump up and jump down were each partitioned into two 

subcategories each, namely, small and large. Transitions for this case possessed of moving 

from a category of jump up or jump down one day to a category of jump up or jump down the 

next, namely: 

State 1: Large jump up (jump up greater than or equal to“𝑎” rupees) 

State 2: Small jump up (jump up between 0 and “𝑎” rupees) 

State 3: Small jump down (jump down less than or equal 0 and greater than “−𝑎” rupees) 

State 4: Large jump down (jump down less than or equal to “−𝑎” rupees) 

In this case state of the system denote the random variable 𝑋𝑛as 

𝑋𝑛 = {

1,            if              𝐷𝑛 ≥ 𝑎,
2,            if       𝑎 > 𝐷𝑛 > 0,
3,             if   0 ≥ 𝐷𝑛 > −𝑎,
4,            if            𝐷𝑛 ≤ −𝑎.

 



Here “𝑎” is denoted as threshold value of absolute exchange rate changes and it was fixed by 

determining the absolute mean of the exchange rate daily changes of each currency separately. 

 

RESULTS AND DISCUSSION 

The present study is based on time series data related to daily exchange rate. Hence, 

randomness of the data set is checked by using the following plots. 

 
 

Figure 1. Plot of  daily exchange rate of US 
dollar 

 
 

Figure 2. Movement of daily exchange rate 
behavior  for US dollar 

Figure 1 indicates that daily LKR exchange rate of US dollar has been changed over time. 

Figure 2 seem that there is no specific pattern in the movement of daily exchange rate and so 

that it can be applied to the random walk model for this study. The method of maximum 

likelihood has been used to estimate the transition probabilities under the certain assumptions. 

Thus the estimated transition probability �̂�𝑖𝑗 =   𝑛𝑖𝑗 𝑛𝑖⁄ , where 𝑛𝑖𝑗  denotes the number of 

transitions from state 𝑖 to state 𝑗 and  𝑛𝑖 = ∑ 𝑛𝑖𝑗𝑗 . The transition probability matrix, steady 

state distribution and mean return times are estimated as follows, which takes into account the 

data for US dollar for two cases separately: The transition matrix for case-1was found to be:  

 State       1 2    

𝑃1 = 
      1 [

0.4259 0.5741
0.5513 0.4487

] 𝜋 = [0.4899, 0.5101] 
      2 𝑚 = [2.0412, 1.9604] 

Each row of this matrix 𝑃1 is a probability vector and it is estimated probability for change in 

the behavior of the exchange rate movement for two consecutive days. In addition, matrix 

indicates that a given day irrespective of being in either state, there is a greater chance of 

transitioning to a reverse state.  For example, estimate transition probability is interpreted as 

57.41 % of the days, where exchange rate of US dollar that jump up will jump down. All 

states are communicated and aperiodic, then chain is an ergodic chain. Therefore, 𝜋1 =
0.4899, 𝜋2 = 0.5101, express that in a large number of days 48.99 % of the time the 

exchange rate  change is predicted to tend to a jump up state and 51.01 % of the time price 

change is predicted to tend to a jump down state. Further, mean recurrence time vector 

specifies that the average return days of jump up state is (𝑚11 ≅ 2 days) approximately equal 

to jump down state (𝑚22 ≅ 2 days). 

For the case-2, based on the data, compute the state threshold value “𝑎” is 0.2317 rupees, then 

the transition matrix was found to be:  

 State       1     2          3             4 

𝑃2 =  

1 

[

0.1661 0.2102 0.3593 0.2644
0.1108 0.3387 0.4189 0.1316
0.1287
0.3272

0.4342
0.1949

0.3450 0.0921
0.2978 0.1801

] 
2 

3 

4 

𝜋 = [0.1574, 0.3324, 0.3650, 0.1451 ] and 𝑚 =
[6.3532, 3.0084, 2.7397,   6.8918]. 
In matrix 𝑃2 is a specific value of proportion for change in the behavior of the exchange rate 

movement in two successive days. First two row vectors observe that in a given day 

irrespective of being in either large jump up or small jump up state, there is a higher chance of 
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transitioning to a state of small jump down than the other states. The third row vector 

indicates that there is a greater chance of transitioning to a state small jump up than other 

states. If a given day is in large jump down state, there is a better chance of transitioning to a 

state of large jump up than other states. Further, steady state probability 𝜋 is expressed as 

exchange rate movement among states is, after long days; consist of the following proportions 

in each category: 15.74 % in the state-1, 33.24 % in the state-2, 36.50 % in the state-3 and 

14.51 % in the state-4. Finally, the average return period of the corresponding states 1, 2, 3, 

and 4 are [6.3532, 3.0084, 2.7397,   6.8918] days respectively. 

Table 1. The matrix and vector estimators of the Euro and British pound currencies 

Euro State       1 2 

 

      1 

2 
[
0.4725 0.5275
0.4791 0.5209

]  

𝜋 = [0.4760, 0.5240] 
𝑚 = [2.1008, 1.9084] 

𝑎 = 0.5546 

State       1     2          3             4 

1 

[

0.2233 0.2642 0.2987 0.2138
0.1623 0.3019 0.3874 0.1483
0.1456
0.1830

0.3498
0.2618

0.3769 0.1276
0.3060 0.2492

] 
2 

3 

4 

𝜋 = [0.1703, 0.3057, 0.3548, 0.1692 ] 

𝑚 = [5.8720, 3.2712, 2.8185,   5.9102] 
 

British 

pound 

State       1 2 

      1 

2 
[
0.4725 0.5275
0.4417 0.5583

]  

𝜋 = [0.4557, 0.5443] 
𝑚 = [2.1944, 1.8372] 

𝑎 = 0.6101 

State       1     2          3             4 

1 

[

0.2290 0.2522 0.3333 0.1855
0.1654 0.3012 0.3720 0.1614
0.1599
0.2202

0.2767
0.2324

0.3977 0.1657
0.3456 0.2018

] 
2 

3 

4 

𝜋 = [0.1847, 0.2711, 0.3698, 0.1745 ] 

𝑚 = [5.4142, 3.6887, 2.7042,   5.7306] 
  

CONCLUSIONS 

In this study, daily exchange rate movement of Sri Lankan rupee with respect to US dollar, 

Pound sterling and Euro is empirically investigated by using a Markov chain model. The 

findings revealed that the daily exchange rate movement pattern will show a great propensity 

to have small jump up and small jump down for each currency in the four state models. 

Further, the result shows that the pattern of exchange rate movement is similar against both 

currencies such as Euro and British pound. The movement/fluctuation of exchange rate is 

generally subject to an exposure to various economic factors, for example, GDP of the 

country, interest rate, foreign capital flows, inflation and so on. However, still, there is no 

unique model can accurately predict all these changes and their impacts on daily exchange 

rate movement. Thus, Markov model also no exception. The model described here is used 

only to predict pattern of exchange rate movement. The same Markov chain frame-work can 

be further formulated to forecast amounts of exchange rate value too. Finally, the results of 

this study will definitely helpful for investors and policy makers and enable to design the 

exchange rate policy appropriately in the country. 
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